
Lecture 32

Image Theory

32.1 Image Theory

Image theory can be used to derived closed form solution to boundary value problems when
the geometry is simple and has a lot of symmetry. The closed form solutions in turn offer
physical insight into the problems. This theory or method is also discussed in many textbooks
[1, 48,59,71,155,162,163].

32.1.1 A Note on Electrostatic Shielding

For electrostatic problems, a conductive medium suffices to produce surface charges that
shield out the electric field from the conductive medium. If the electric field is not zero,
then since J = σE, the electric current inside the conductor will keep flowing until inside the
conductive medium E = 0, and no electric current can flow in the conductor. In other words,
when the field reaches the quiescent state, the charges redistribute themselves so as to shield
out the electric field, and that the total internal electric field, E = 0. And from Faraday’s
law that tangential E field is continuous, then n̂ × E = 0 on the conductor surface since
n̂ × E = 0 inside the conductor. Figure 32.1 shows the static electric field, in the quiescent
state, between two conductors (even though they are not PEC), and the electric field has to
be normal to the conductor surfaces.

32.1.2 Relaxation Time

The time it takes for the charges to move around until they reach their quiescent distribution
is called the relaxation time. It is very much similar to the RC time constant of an RC circuit
consisting of a resistor in series with a capacitor. It can be proven that this relaxation time
is related to ε/σ, but the proof is beyond the scope of this course. Note that when σ → ∞,
the relaxation time is zero. In other words, in a perfect conductor or a superconductor, the
charges can reorient themselves instantaneously if the external field is time-varying.

Electrostatic shielding or low-frequency shielding is important at low frequencies. The
Faraday cage is an important application of such a shielding.
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Figure 32.1: The objects can just be conductors, and in the quiescent state (static state), the
tangential electric field will be zero on their surfaces.

However, if the conductor charges are induced by an external electric field that is time
varying, then the charges have to constantly redistribute/re-orient themselves to try to shield
out the incident time-varying electric field. Currents have to constantly flow around the
conductor. Then the electric field cannot be zero inside the conductors as shown in Figure
32.2. In other words, a finite conductor cannot shield out completely a time-varying electric
field.
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Figure 32.2: If the source that induces the charges on the conductor is time varying, the
current in the conductor is always nonzero so that the charges can move around to respond
to the external time-varying charges.

For a perfect electric conductor (PEC), E = 0 inside with the following argument: Because
J = σE where σ →∞, let us assume an infinitesimally time-varying electric field in the PEC
to begin with. It will yield an infinite electric current, and hence an infinite time-varying
magnetic field. A infinite time-varying magnetic field in turn yields an infinite electric field
that will drive an electric current, and these fields and current will be infinitely large. This is
an unstable sequence of events if it is true. Hence, the only possibility is for the time-varying
electromagnetic fields to be zero inside a PEC.

Thus, for the PEC, the charges can re-orient themselves instantaneously on surface when
the inducing electric fields from outside are time varying. In other words, the relaxation time
ε/σ is zero. As a consequence, the time-varying electric field E is always zero inside PEC,
and hence n̂×E = 0 on the surface of the PEC.
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32.1.3 Electric Charges and Electric Dipoles

Image theory for a flat conductor surface or a half-space is quite easy to derive. To see that,
we can start with electro-static theory of putting a positive charge above a flat plane. As
mentioned before, for electrostatics, the plane or half-space does not have to be a perfect
conductor, but only a conductor (or a metal). The tangential static electric field on the
surface of the conductor has to be zero.

The tangential static electric field can be canceled by putting an image charge of opposite
sign at the mirror location of the original charge. This is shown in Figure 32.3. Now we can
mentally add the total field due to these two charges. When the total static electric field due
to the original charge and image charge is sketched, it will look like that in Figure 32.4. It
is seen that the static electric field satisfies the boundary condition that n̂ × E = 0 at the
conductor interface due to symmetry.

Figure 32.3: The use of image theory to solve the BVP of a point charge on top of a conductor.
The boundary condition is that n̂×E = 0 on the conductor surface.
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Figure 32.4: The total electric of the original problem and the equivalent problem when we
add the total electric field due to the original charge and the image charge.

An electric dipole is made from a positive charge placed in close proximity to a negative
charge. Using that an electric charge reflects to an electric charge of opposite polarity above
a conductor, one can easily see that a static horizontal electric dipole reflects to a static
horizontal electric dipole of opposite polarity. By the same token, a static vertical electric
dipole reflects to static vertical electric dipole of the same polarity as shown in Figure 32.5.
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Figure 32.5: On a conductor surface, a horizontal static dipole reflects to one of opposite
polarity, while a static vertical dipole reflects to one of the same polarity. If the dipoles are
time-varying, then a PEC will have a same reflection rule.

If this electric dipole is a Hertzian dipole whose field is time-varying, then one needs
a PEC half-space to shield out the electric field. Also, the image charges will follow the
original dipole charges instantaneously. Then the image theory for static electric dipoles over
a half-space still holds true if the dipoles now become Hertzian dipoles.

32.1.4 Magnetic Charges and Magnetic Dipoles

A static magnetic field can penetrate a conductive medium. This is apparent from our
experience when we play with a bar magnet over a copper sheet: the magnetic field from the
magnet can still be experienced by iron filings put on the other side of the copper sheet.

However, this is not the case for a time-varying magnetic field. Inside a conductive
medium, a time-varying magnetic field will produce a time-varying electric field, which in
turn produces the conduction current via J = σE. This is termed eddy current, which by
Lenz’s law, repels the magnetic field from the conductive medium.1

Now, consider a static magnetic field penetrating into a perfect electric conductor, an
minute amount of time variation will produce an electric field, which in turn produces an
infinitely large eddy current. So the stable state for a static magnetic field inside a PEC is
for it to be expelled from the perfect electric conductor. This in fact is what we observe when
a magnetic field is brought near a superconductor. Therefore, for the static magnetic field,
where B = 0 inside the PEC, then n̂ ·B = 0 on the PEC surface.

Now, assuming a magnetic monopole exists, it will reflect to itself on a PEC surface so
that n̂ ·B = 0 as shown in Figure 32.6. Therefore, a magnetic charge reflects to a charge of

1The repulsive force occurs by virtue of energy conservation. Since “work done” is needed to set the eddy
current in motion, or to impart kinetic energy to the electrons forming the eddy current, a repulsive force is
felt in Lenz’s law so that work is done in pushing the magnetic field into the conductive medium.
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similar polarity on the PEC surface.

Figure 32.6: On a PEC surface, n̂ · B = 0. Hence, a magnetic monopole on top of a PEC
surface will have magnetic field distributed as shown.

By extrapolating this to magnetic dipoles, they will reflect themselves to the magnetic
dipoles as shown in Figure 32.7. A horizontal magnetic dipole reflects to a horizontal magnetic
dipole of the same polarity, and a vertical magnetic dipole reflects to a vertical magnetic dipole
of opposite polarity. Hence, a dipolar bar magnet can be levitated by a superconductor when
this magnet is placed closed to it. This is also known as the Meissner effect [164], which is
shown in Figure 32.8.

A time-varying magnetic dipole can be made from a electric current loop. Over a PEC, a
time-varying magnetic dipole will reflect the same way as a static magnetic dipole as shown
in Figure 32.7.
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Figure 32.7: Using the rule of how magnetic monopole reflects itself on a PEC surface, the
reflection rules for magnetic dipoles can be ascertained.

Figure 32.8: On a PEC (superconducting) surface, a vertical magnetic dipole reflects to one
of opposite polarity. Hence, the dipoles repel each other displaying the Meissner effect. The
magnet, because of the repulsive force from its image, levitates above the superconductor
(courtesy of Wikipedia [165]).
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32.1.5 Perfect Magnetic Conductor (PMC) Surfaces

Magnetic conductor does not come naturally in this world since there are no free-moving
magnetic charges around. Magnetic monopoles are yet to be discovered. On a PMC surface,
by duality, n̂×H = 0. At low frequency, it can be mimicked by a high µ material. One can
see that for magnetostatics, at the interface of a high µ material and air, the magnetic flux is
approximately normal to the surface, resembling a PMC surface. High µ materials are hard
to find at higher frequencies. Since n̂×H = 0 on such a surface, no electric current can flow
on such a surface. Hence, a PMC can be mimicked by a surface where no surface electric
current can flow. This has been achieved in microwave engineering with a mushroom surface
as shown in Figure 32.9 [166]. The mushroom structure consisting of a wire and an end-cap,
can be thought of as forming an LC tank circuit. Close to the resonance frequency of this
tank circuit, the surface of mushroom structures essentially becomes open circuits resembling
a PMC. Therefore, there is no surface electric current on this surface, and the tangential
magnetic field is small, the hallmark of a good magnetic conductor.

Figure 32.9: A mushroom structure operates like an LC tank circuit. At the right frequency,
the surface resembles an open-circuit surface where no current can flow. Hence, tangential
magnetic field is zero resembling perfect magnetic conductor (courtesy of Sievenpiper [166]).

Mathematically, a surface that is dual to the PEC surface is the perfect magnetic conductor
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(PMC) surface. The magnetic dipole is also dual to the electric dipole. Thus, over a PMC
surface, these electric and magnetic dipoles will reflect differently as shown in Figure 32.10.
One can go through Gedanken experiments and verify that the reflection rules are as shown
in the figure.

Figure 32.10: Reflection rules for electric and magnetic dipoles over a PMC surface.

Figure 32.11: Image theory for multiple images [29].

32.1.6 Multiple Images

For the geometry shown in Figure 32.11, one can start with electrostatic theory, and convince
oneself that n̂ × E = 0 on the metal surface with the placement of charges as shown. For
conducting media, they charges will relax to the quiescent distribution after the relaxation
time. For PEC surfaces, one can extend these cases to time-varying dipoles because the
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charges in the PEC medium can re-orient instantaneously (i.e. with zero relaxation time) to
shield out or expel the E and H fields. Again, one can repeat the above exercise for magnetic
charges, magnetic dipoles, and PMC surfaces.

Figure 32.12: Image theory for a point charge near a cylinder or a sphere can be found in
closed form [29].

32.1.7 Some Special Cases

One curious case is for a static charge placed near a conductive sphere (or cylinder) as shown in
Figure 32.12.2 A charge of +Q reflects to a charge of −QI inside the sphere. For electrostatics,
the sphere (or cylinder) need only be a conductor. However, this cannot be generalized to
electrodynamics or a time-varying problem, because of the retardation effect: A time-varying
dipole or charge will be felt at different points asymmetrically on the surface of the sphere
from the original and image charges. Exact cancelation of the tangential electric field cannot
occur for time-varying field.

Figure 32.13: A static charge over a dielectric interface can be found in closed form.

When a static charge is placed over a dielectric interface, image theory can be used to
find the closed form solution. This solution can be derived using Fourier transform technique

2This is worked out in p. 48 and p. 49, Ramo et al [29].
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which we shall learn later [34]. It can also be extended to multiple interfaces. But image
theory cannot be used for the electrodynamic case due to the different speed of light in
different media, giving rise to different retardation effects.
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